Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice.
نویسندگان
چکیده
Hepatic lipid synthesis is known to be regulated by food consumption. In rodents fasting decreases the synthesis of cholesterol as well as fatty acids. Refeeding a high carbohydrate/low fat diet enhances fatty acid synthesis by 5- to 20-fold above the fed state, whereas cholesterol synthesis returns only to the prefasted level. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in cholesterol and fatty acid synthesis. Here, we show that fasting markedly reduces the amounts of SREBP-1 and -2 in mouse liver nuclei, with corresponding decreases in the mRNAs for SREBP-activated target genes. Refeeding a high carbohydrate/low fat diet resulted in a 4- to 5-fold increase of nuclear SREBP-1 above nonfasted levels, whereas nuclear SREBP-2 protein returned only to the nonfasted level. The hepatic mRNAs for fatty acid biosynthetic enzymes increased 5- to 10-fold above nonfasted levels, a pattern that paralleled the changes in nuclear SREBP-1. The hepatic mRNAs for enzymes involved in cholesterol synthesis returned to the nonfasted level, closely following the pattern of nuclear SREBP-2 regulation. Transgenic mice that overproduce nuclear SREBP-1c failed to show the normal decrease in hepatic mRNA levels for cholesterol and fatty acid synthetic enzymes upon fasting. We conclude that SREBPs are regulated by food consumption in the mouse liver and that the decline in nuclear SREBP-1c upon fasting may explain in part the decrease in mRNAs encoding enzymes of the fatty acid biosynthetic pathway.
منابع مشابه
Sterol-dependent regulation of proprotein convertase subtilisin/kexin type 9 expression by sterol-regulatory element binding protein-2.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a member of the subtilases that promotes the internalization and degradation of LDL receptor in liver and thereby controls the level of LDL cholesterol in plasma. Here, we show that the expression of PCSK9 in HepG2 cells is completely dependent on the absence or presence of sterols. The minimal promoter region of the PCSK9 gene contains a...
متن کاملOccupancy and function of the -150 sterol regulatory element and -65 E-box in nutritional regulation of the fatty acid synthase gene in living animals.
Upstream regulatory factor (USF) and sterol regulatory element binding protein (SREBP) play key roles in the transcriptional regulation of the fatty acid synthase (FAS) gene by feeding and insulin. Due to the dual binding specificity of SREBP, as well as the presence of multiple consensus sites for these transcription factors in the FAS promoter, their physiologically relevant functional bindin...
متن کاملInsulin-independent induction of sterol regulatory element-binding protein-1c expression in the livers of streptozotocin-treated mice.
Insulin and glucose together have been previously shown to regulate hepatic sterol regulatory element-binding protein (SREBP)-1c expression. We sought to explore the nutritional regulation of lipogenesis through SREBP-1c induction in a setting where effects of sugars versus insulin could be distinguished. To do so, mice were insulin depleted by streptozotocin (STZ) administration and subjected ...
متن کاملSterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes.
To elucidate the physiological role of sterol regulatory element-binding protein-1 (SREBP-1), the hepatic mRNA levels of genes encoding various lipogenic enzymes were estimated in SREBP-1 gene knockout mice after a fasting-refeeding treatment, which is an established dietary manipulation for the induction of lipogenic enzymes. In the fasted state, the mRNA levels of all lipogenic enzymes were c...
متن کاملSREBP-1 regulates the expression of heme oxygenase 1 and the phosphatidylinositol-3 kinase regulatory subunit p55 gamma.
Sterol-regulatory element binding proteins (SREBPs) control the expression of genes involved in fatty acid and cholesterol biosynthesis. Using microarrays, we observed that mature SREBP-1 also induced the expression of genes unrelated to lipid metabolism, such as heme oxygenase 1 (HMOX1), plasma glutathione peroxidase, the phosphatidylinositol-3 kinase regulatory subunit p55 gamma, synaptic ves...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 11 شماره
صفحات -
تاریخ انتشار 1998